

Centro Universitário de União da Vitória

União da Vitória | São Mateus do Sul | Paraná

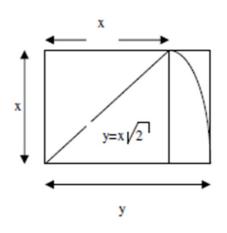
Telefones: 42.3522.1837 | 42.3532.6154

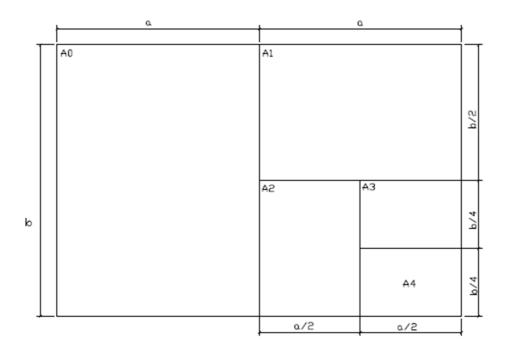
www.uniuv.edu.br

Desenho Técnico I

APOSTILA Versão 2013

Prof. Peterson Jaeger

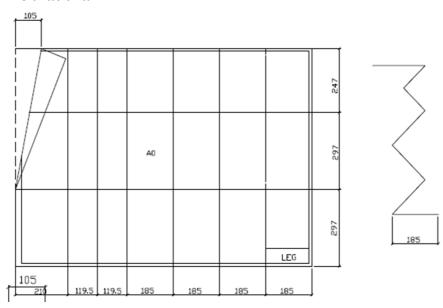

Conteúdo

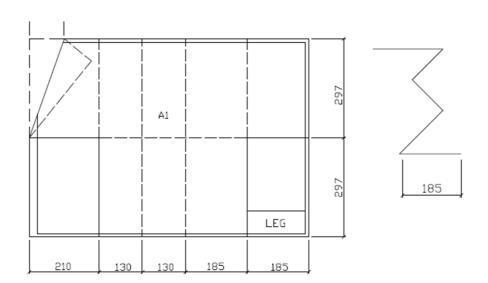

- 1. Folhas
- 2. Régua paralela e esquadros
- 3. Distinção de traços
- 4. Uso do compasso
- 5. Construções geométricas básicas
- 6. Tangentes e concordantes
- 7. Caligrafia técnica
- 8. Escalas
- 9. Cotas em desenho técnico
- 10. Perspectiva isométrica
- 11. Perspectiva cavaleira

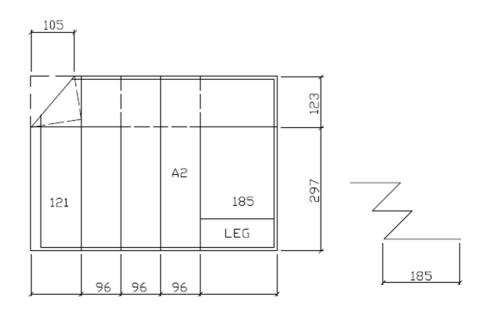
Folhas

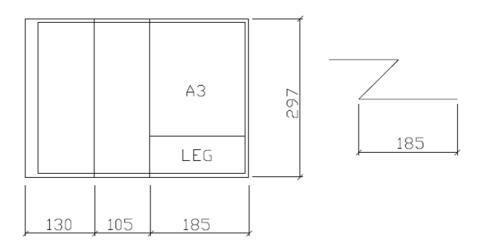
Dimensões das folhas:

Differisoes das formasi		
Folha	Largura (mm)	Altura (mm)
A0	841	1189
A1	594	841
A2	420	594
А3	297	420
A4	210	297

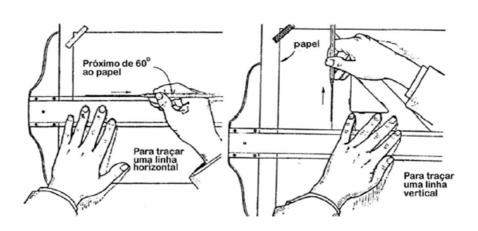





Margens:


Formato	Margem esquerda (mm)	Demais margens (mm)	
A0	25	10	
A1	25	10	
A2	25	7	
А3	25	7	
A4	25	7	

Dobradura:



Régua paralela e esquadros

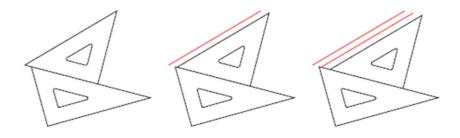
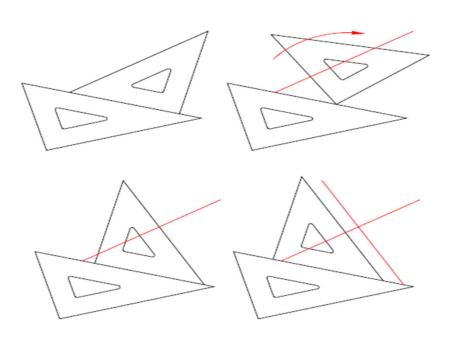
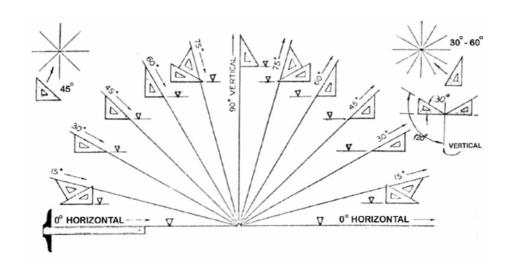
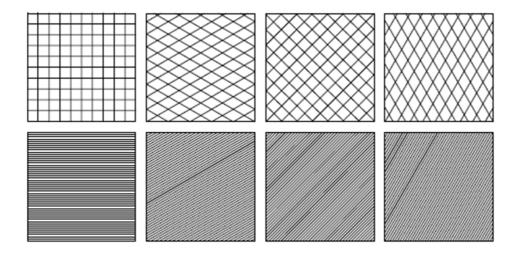
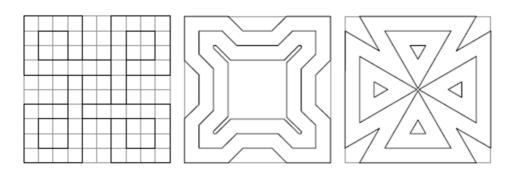
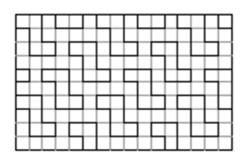
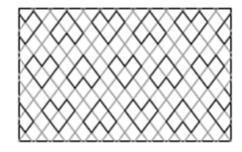
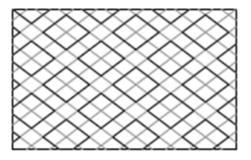


Figura 1 - Traçando retas paralelas com os esquadros

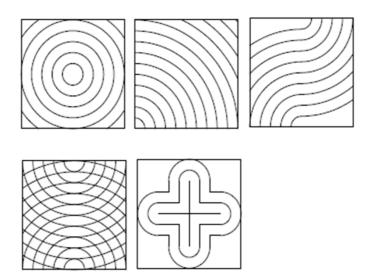






Figura 2 – Traçando retas perpendiculares com os esquadros





Distinção de traços



Uso do compasso

Construções geométricas básicas

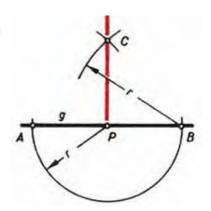
Perpendicular passando por um ponto fora da reta

Trace um arco com raio r1 qualquer, centrado no ponto P, de tal forma que cruze a reta g em dois pontos, A e B.

A partir dos pontos A e B, trace dois arcos, com raio r2 qualquer.

O encontro dos dois arcos determina o ponto C.

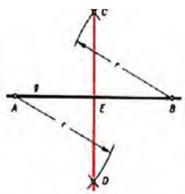
Ligando os pontos C e P, encontrase a perpendicular desejada.


A C

Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.

Perpendicular passando por um ponto sobre a reta

Trace um arco centrado no ponto P, com um raio r qualquer, de forma que cruze a reta g nos pontos A e B.


Com o mesmo raio r, trace dois arcos, centrados nos pontos A e B, determinando o ponto C.

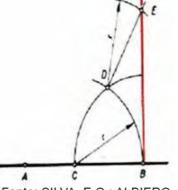
Dividir uma reta em duas partes iguais (mediatriz)

Trace dois arcos a partir dos pontos A e B, com um raio pouco maior que a metade da reta a ser dividida, determinando os pontos C e D.

O ponto E, encontrado pela reta CD, obtido pela interligação dos pontos A e D, divide a reta AB exatamente ao meio, no sentido absolutamente perpendicular à reta AB.

Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.

Perpendicular na extremidade de uma reta


Trace um arco, com raio qualquer r, a partir do ponto B, até encontrar a reta AB, determinando o ponto C.

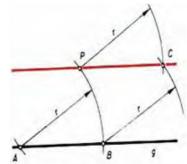
Centrado no ponto C, trace outro arco com o mesmo raio r, determinando o ponto D.

Ligue os pontos C e D por meio de uma reta indefinida.

fi Novamente, com o raio r, trace um arco, de tal maneira que ele cruze a reta CD, determinando o ponto E.

fi Ligando os pontos E e B, encontra-se a perpendicular procurada.

Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.

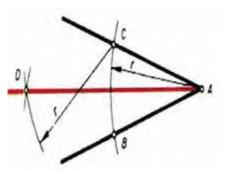

Paralela passando por um ponto fora da reta

fi Localize sobre a reta g um ponto A qualquer.

fi T race um arco, com um raio r equivalente à distância AP, de tal forma que cruze a reta g, determinando o ponto B.

fi Com o mesmo raio r , trace outro arco a partir dos pontos B e P, determinando o ponto C.

fi Ligando-se os pontos C e P, encontra-se a paralela desejada.

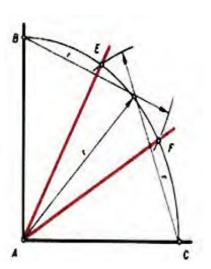

Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.

Dividir um ângulo em duas partes iguais (bissetriz)

Centrado no ponto A do ângulo, trace um arco, com raio qualquer r, de tal maneira que ele corte as duas retas que o formam, determinando os pontos B e C.

Em seguida, trace dois arcos, com o mesmo raio r, centrado nos pontos B e C, determinando o ponto D.

A bissetriz é a reta que ligará os pontos A e B, dividindo o ângulo em duas partes absolutamente iguais.

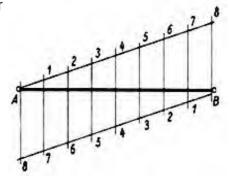

Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.

Dividir o ângulo reto em três partes iguais

A partir do vértice A do ângulo, trace um arco r, de tal maneira que ele corte as duas retas que formam o ângulo em dois pontos, B e C.

Com o mesmo raio, trace dois arcos, um centrado no ponto B e outro no ponto C, determinando os pontos E e F.

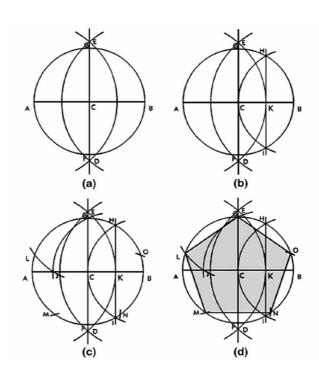
Ligando-se o ponto A aos pontos E e F, obtêm-se 3 ângulos iguais, cada qual com 30°.



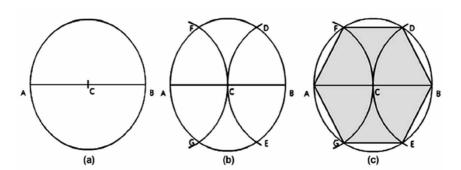
Divisão de uma reta em partes iguais

Trace junto à reta AB, a partir do ponto A, duas retas paralelas, com qualquer ângulo.

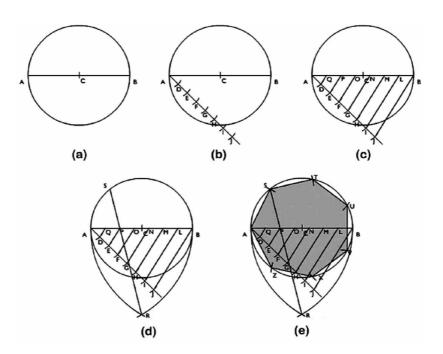
Divida as retas auxiliares em n partes iguais. A medida das divisões é totalmente arbitrária.


Ligue ao ponto B, por uma reta, o último ponto da reta auxiliar (n = 8) e, com o jogo de esquadros, ligue os pontos das duas retas auxiliares por traços paralelos.

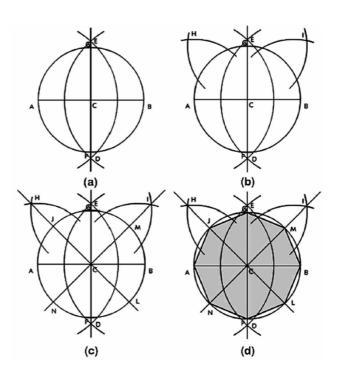
Fonte: SILVA, E.O.; ALBIERO, E. Desenho Técnico Fundamental. São Paulo: EPU, 1977.


Pentágono regular

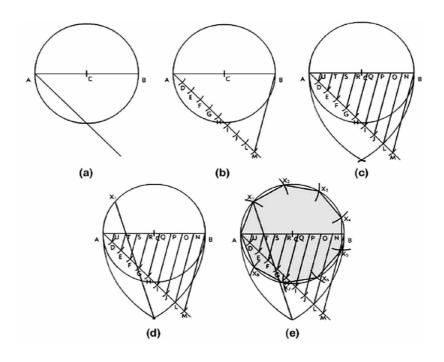
- Traçar uma circunferência com centro em "C" e demarcar o diâmetro determinando os ponto "A" e "B". Com centro em "A", e raio maior que o raio da circunferência, determinar o primeiro arco. Repetir o procedimento com o centro em "B" e o mesmo arco determinando os pontos "D" e "E". Traçar o segmento DE determinando os pontos "G" e "P";
- Com centro em "B" e raio igual à circunferência, traçar o arco determinando os pontos "H", "K" e "I";
- Compasso com centro em "K" e raio KG determinar o ponto "J".
 Com o centro do compasso em "G" e raio GJ determinar o ponto "L";
- Demarcar os segmentos GL, LM, MN, NO e OG.


Hexágono regular

- Traçar uma circunferência com centro em "C" e demarcar o diâmetro determinando os pontos "A" e "B";
- Traçar um arco com centro em "B" e raio igual ao raio da circunferência. Repetir o procedimento para o centro em "A" e obter os pontos "A", "F", "D", "B", "E", e "G" que dividem a circunferência em 6 partes iguais;
- Traçar os segmentos de reta AF, FD, DB, BE, EG e GA para obter o Hexágono Regular.

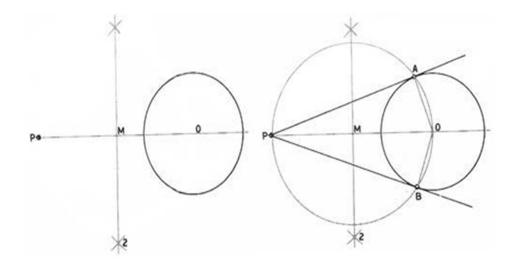

Heptágono regular

- Traçar uma circunferência com centro em "C" e demarcar o diâmetro determinando os ponto "A" e "B";
- Traçar uma semi-reta partindo de "A" e marcar sete (7) pontos eqüidistantes (D, E, F, G, H, I, J);
- Traçar um segmento de reta de J a B e traçar paralelas a JB intersectando os pontos I, H, G, F, E e D;
- Traçar dois (2) arcos com raio AB, um com centro em "A" e outro em "B", determinando o ponto "R". Traçar um segmento ligando "R" a "P" e determinar o ponto "S";
- Sendo AS a medida padrão, com o compasso marcar os outros pontos (T, U, V, X e Z) dividindo a circunferência em sete (7)

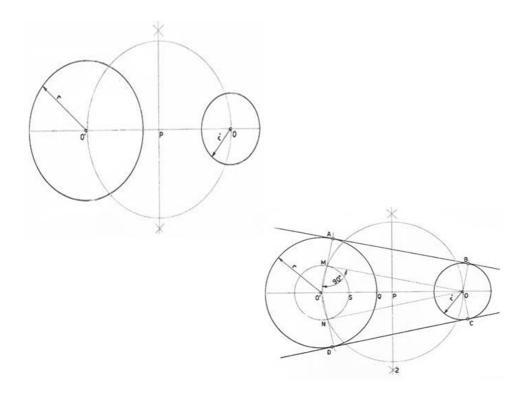

Octógono regular

- Traçar uma circunferência com centro em "C" e demarcar o diâmetro determinando os pontos "A" e "B". Com centro em "A", e raio maior que o raio da circunferência, determinar o primeiro arco. Repetir o procedimento com o centro em "B" e o mesmo arco determinando os pontos "D" e "E". Traçar o segmento DE determinando os pontos "G" e "P";
- Traçar um arco com centro em "G" com raio maior que metade de GA. Proceder de mesma forma para os pontos "A" e "B" determinando os pontos "H" e "I";
- Traçar uma reta de "H" até "C" e prolongá-la até interceptar a circunferência. Proceder da mesma forma em "I". Os pontos A, J, G, M, B, L, D e N dividem a circunferência em 8 partes iguais.

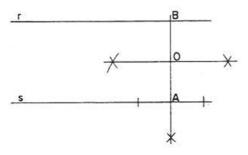
Eneágono regular

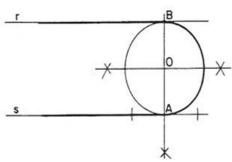

- Traçar uma circunferência com centro em "C" e demarcar o diâmetro determinando os pontos "A" e "B";
- Traçar uma semi-reta partindo de "A" e marcar nove (9) pontos eqüidistantes (D, E, F, G, H, I, J, L, M);
- Traçar um segmento de reta de M a B e traçar paralelas a MB intersectando os pontos N, O, P, Q, R, S, T, U;
- Traçar dois (2) arcos com raio AB, um com centro em "A" e outro em "B" e traçar um segmento ligando a interseção com o ponto "T" e determinar o ponto "X₁";
- Sendo AX₁ a medida padrão, com o compasso marcar os outros pontos (X₂, X₃, X₄, X₅, X₆, X₇, X₈) dividindo a circunferência em nove (9) partes iguais. Ligando os segmentos de reta AX₁, X₁X₂, X₂X₃, X₃X₄, X₄X₅, X₅X₆, X₆X₇, X₇X₈, X₈A obtendo-se o Eneágono.

Tangentes e concordantes


Tangente a uma circunferência, passando por um ponto P

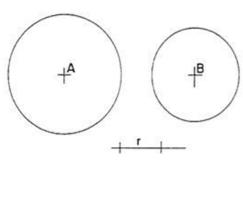
- Ligue P ao centro da circunferência, gerando o segmento OP;
- · Defina o ponto médio M do segmento OP;
- Trace uma circunferência com centro em M passando por O e por P. Definem-se assim os pontos A e B;
- As retas que ligam os pontos P e A, e P e B são tangentes à circunferência inicial;

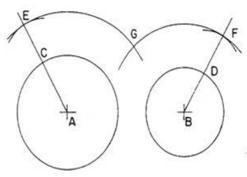

Tangente entre duas circunferências

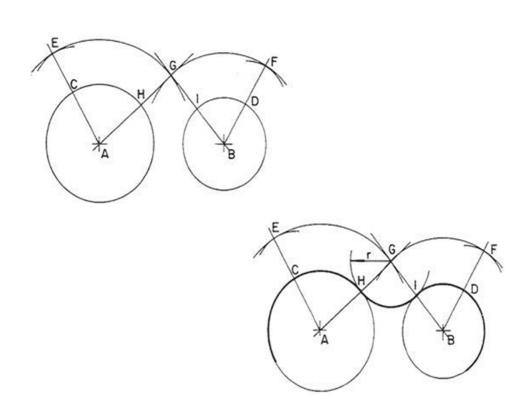

- Defina o ponto médio do segmento que une os centros das circunferências e traça-se uma circunferência de centro em P passando por O e O';
- Trace uma circunferência de raio r r', interna à circunferência maior.
 Com isso serão obtidos os pontos M e N. Do prolongamento dos segmentos de O'M e O'N serão definidos os pontos A e D;
- Através do traçado de paralelas, obter os pontos B e C. Os segmentos AB e DC são tangentes às duas circunferências.

Concordância entre duas retas paralelas

- Dadas as retas r e s, paralelas, e o ponto A, contido em s;
- Trace uma perpendicular pelo ponto A, determinando o ponto B.
- Trace a mediatriz do segmento AB, obtendo o ponto O;
- Trace o arco de concordância entre as duas retas com abertura OA e centro em O. Os pontos de tangência são A e B.


Concordância entre retas concorrentes


- Dado o ângulo formado peias retas t e s e o raio do arco de concordância r;
- Determine o ponto A, traçando paralelas às retas t e s. Determine os pontos de tangência B e C, traçando, a partir de A, linhas perpendiculares às retas t e s, respectivamente.
- · Trace o arco que concordará com as retas dadas.



Concordância entre duas circunferências

- Dadas duas circunferências e o raio do arco de concordância r;
- Trace um arco com centro em A e raios = raios da circunferência 1 + raio de concordância e um segundo arco com centro em B e raios = raio da circunferência 2 + raio de concordância. Assim será determinado o ponto G;
- Determine os pontos de tangência H e I, ligando A com G e B com G;
- Trace o arco de concordância entre suas circunferências com centro em G e abertura r.

Caligrafia técnica

- Tem o objetivo de criar uniformidade e legibilidade para evitar prejuízos na clareza do esboço e/ou desenho e evitar a possibilidade de interpretações errôneas
- As letras e números utilizados em desenho técnico são padronizadas pela ABNT, conforme norma "NBR 8402 – Execução de caractere para desenho técnico".

- Para execução, os seguintes elementos devem ser reconhecidos:
 - Linha de base(b)
 - Altura de letras maiúsculas(h)
 - Altura de letras minúsculas(c)
 - Distância entre caracteres (a)
 - o Distância entre palavras (e)

Caligrafia técnica

Escalas

Escala é a relação entre a medida de um objeto ou lugar representado no papel e sua medida real, ou seja, é a relação que indica a proporção entre cada medida do desenho e a sua dimensão real no objeto.

Nos desenhos em escala, as medidas lineares do objeto real ou são mantidas, ou então são aumentadas ou reduzidas proporcionalmente.

Escala

As dimensões angulares do objeto permanecem inalteradas. Nas representações em escala, as formas dos objetos reais são mantidas.

Escala Natural

Se uma peça for desenhada com as medidas iguais às da peça real, a escala do desenho será NATURAL ou REAL ou ainda, Escala 1:1 (escala um para um)

MD = MR

Escala de Redução

As maiorias dos desenhos são feitos em tamanho reduzido. As normas técnicas recomendam as seguintes ESCALAS DE REDUÇÃO: 1:2; 1:5; 1:10; 1:20; 1:50; 1:100; 1:200; 1:500; 1:1000, etc.

MD < MR

Escala de Ampliação

Peças menores são desenhadas com seu tamanho ampliado. Para tanto, empregamos as ESCALAS DE AMPLIAÇÃO: 2:1; 5:1; 10:1; etc.

MD > MR

$$E = \frac{d}{D} = \frac{1}{N}$$

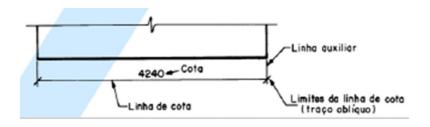
Onde,

- E = é a escala;
- d = distância medida no desenho;
- D = distância real (do objeto, peça, estrutura, etc.).
- N = é o módulo da escala.

Cotas em desenho técnico

Definição

Cota:

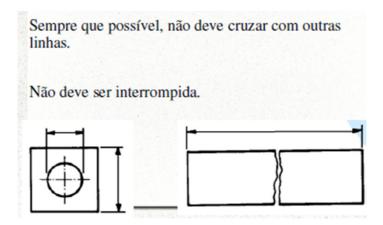

Representação gráfica no desenho da característica do elemento, através de linhas, símbolos, notas e valor numérico.

Aplicação

- Toda cotagem deve ser representada diretamente no desenho.
- Devem ser utilizadas as mesmas unidades, porém, sem o emprego de símbolos
- Cotar somente o necessário. Nenhum elemento deve ser definido por mais de uma cota.

Elementos de cotagem

- · Linha auxiliar
- · Linha de cota
- · Limite da linha de cota
- Cota



Linha auxiliar e cota:

Linha estreita e contínua.

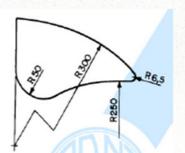
Ligeiramente prolongada além da linha de cota e de afastada do contorno da linha.

Perpendicular ao elemento dimensionado.

Limite da linha de cota:

Por meio de setas ou traços oblíquos.

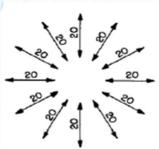
- · Setas podem ser abertas ou fechadas
- Traço oblíquo com inclinação de 45°



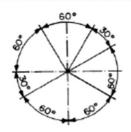
Somente uma forma deve ser utilizada e deve ter o mesmo tamanho, em um mesmo desenho.

As setas são representadas internamente na linha de cota, porém, podem ser locadas externamente, quando da falta de espaço.

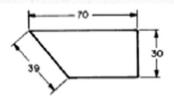
Na cotagem de raios é utilizado exclusivamente a seta.

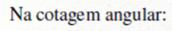

Apresentação da cotagem

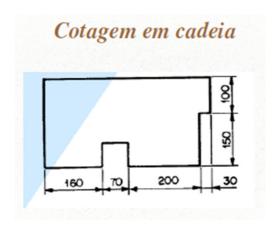
Método 1:

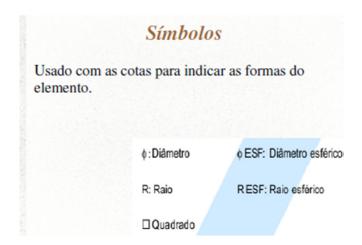

Cotas localizadas acima e paralelamente as linhas de cota, preferencialmente no centro.

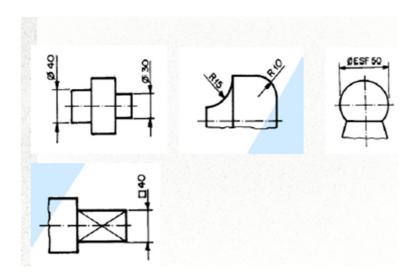
As cotas em linhas inclinadas devem seguir o seguinte padrão:

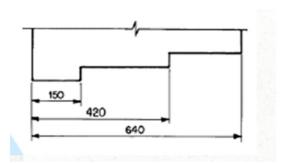

Na cotagem angular, pode ser seguidas umas das seguintes formas:

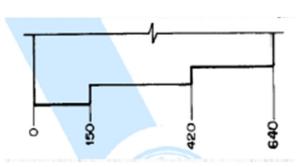



Método 2:


Cotas devem ser lidas da base da folha de papel, com interrupção da linha de cota.



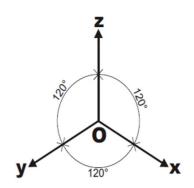


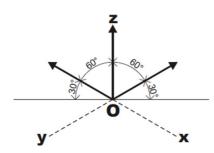


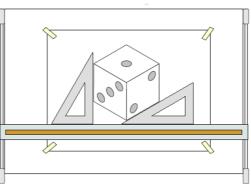


Cotagem por elemento de referência

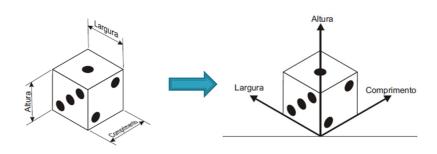
- Usado onde quando várias cotas paralelas entre si, se relacionarem à um ponto de referência.
- · Pode ser cotagem em paralelo ou aditiva

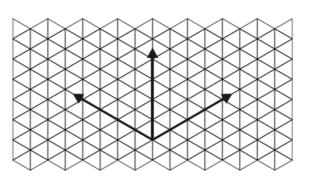




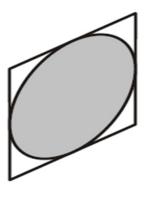


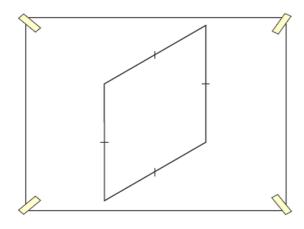
Perspectiva Isométrica

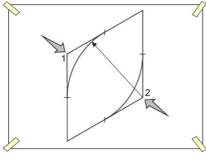

- ▶ É o processo de representação tridimensional em que o objeto se situa num sistema de três eixos coordenados, que fazem entre si ângulos de 120°.
- A perspectiva isométrica é o produto da rotação do objeto em 45° em torno do eixo vertical, sendo logo após inclinado para a frente, de forma que as medidas de todas as arestas reduzem-se à mesma escala.



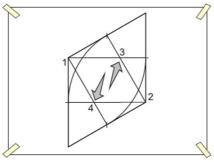
Cada eixo coordenado corresponde à uma dimensão dos objetos.

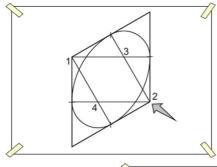


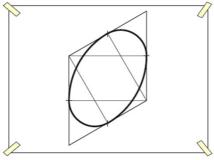

- A malha isométrica é um artifício de desenho cuja finalidade é possibilitar a produção de rascunhos gráficos mais próximos da perspectiva isométrica.
- Consiste numa malha de retas paralelas aos eixos isométricos.


Círculo Isométrico

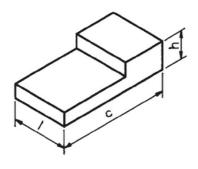
A perspectiva isométrica do círculo será uma elipse inscrita na face cubo isométrico.

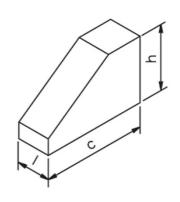


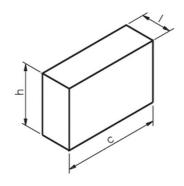

Determinar o ponto médio dos segmentos de reta que são os lados do quadrado perspectivado

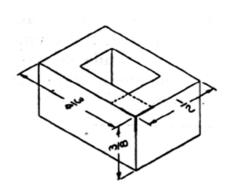

Derermina - se nos vertices do quadrado que possuem a menor diagonal os centros 1 e 2 traçando os arcos até o pontos médios dos lados

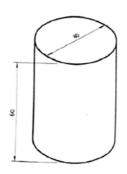
Os centros 3 e 4 estarão nos cruzamentos dos segmentos de reta que unem os centros 1 e 2 aos pontos medios dos lados opostos

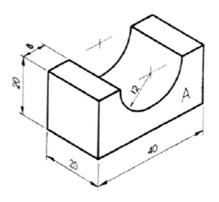


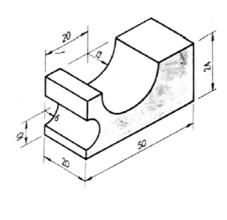

Nos centros 3 e 4 traçar arcos concordantes com os arcos traçados anteriormente

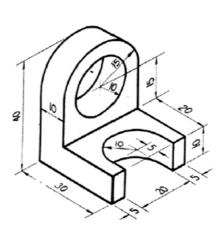


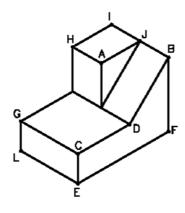

Reforçar os arcos de circunferência de forma que as linhas construtivas fiquem em segundo plano

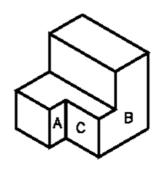

Exercícios

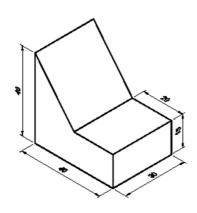


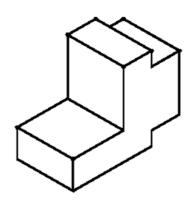


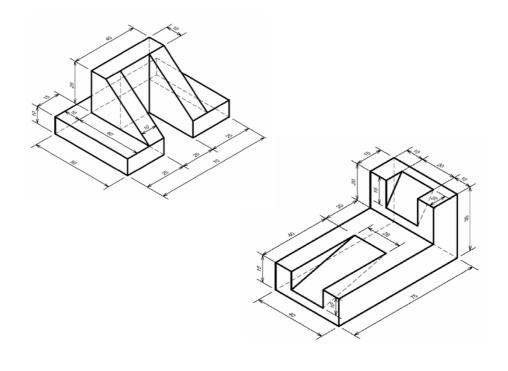


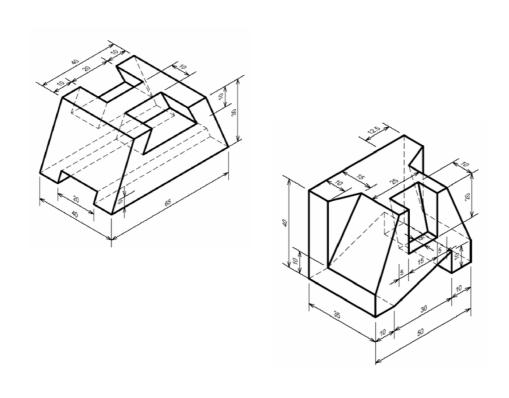


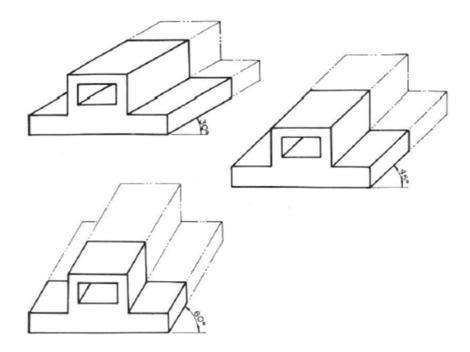












Perspectiva Cavaleira

- Desenha-se uma das faces no mesmo plano de trabalho e as outras duas obliquas ao plano em 30° , 45° ou 60° .
- É necessário minimizar a deformação que esta representação provoca no desenho. Esta redução se aplica diretamente à dimensão.

Ângulo	30°	45∘	600
Redução	2/3	1/2	1/3

